Search results for "Organelle Biogenesis"

showing 8 items of 8 documents

2-Methoxyestradiol Affects Mitochondrial Biogenesis Pathway and Succinate Dehydrogenase Complex Flavoprotein Subunit A in Osteosarcoma Cancer Cells.

2017

Background/aim Dysregulation of mitochondrial pathways is implicated in several diseases, including cancer. Notably, mitochondrial respiration and mitochondrial biogenesis are favored in some invasive cancer cells, such as osteosarcoma. Hence, the aim of the current work was to investigate the effects of 2-methoxyestradiol (2-ME), a potent anticancer agent, on the mitochondrial biogenesis of osteosarcoma cells. Materials and methods Highly metastatic osteosarcoma 143B cells were treated with 2-ME separately or in combination with L-lactate, or with the solvent (non-treated control cells). Protein levels of α-syntrophin and peroxisome proliferator-activated receptor gamma, coactivator 1 alph…

0301 basic medicineCancer ResearchSIRT3Protein subunitSDHAMuscle ProteinsAntineoplastic AgentsMolecular Dynamics SimulationBiochemistryElectron Transport Complex IV03 medical and health sciences0302 clinical medicineGeneticSettore BIO/10 - BiochimicaCell Line TumorSirtuin 3CoactivatorGeneticsHumansMolecular BiologyOsteosarcomaOrganelle BiogenesisbiologyEstradiolSettore BIO/16 - Anatomia UmanaChemistryElectron Transport Complex IICalcium-Binding ProteinsMembrane ProteinsPeroxisomeMitochondrial biogenesiPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaCell biology2-MethoxyestradiolMitochondriaSuccinate dehydrogenaseMolecular Docking Simulation030104 developmental biologyMitochondrial biogenesisSettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesisSirtuinCancer cellbiology.proteinResearch ArticleCancer genomicsproteomics
researchProduct

Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.

2016

The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding I…

0301 basic medicineCations DivalentBiophysicsArabidopsisBiologyBiochemistryMembrane FusionThylakoids03 medical and health sciencesBacterial ProteinsPlant CellsMagnesiumPhotosynthesisCytoskeletonPhospholipidsOrganelle BiogenesisMembrane transport proteinArabidopsis ProteinsMembrane structureSynechocystisLipid bilayer fusionMembrane ProteinsCell BiologyCell biology030104 developmental biologyMembraneMembrane proteinThylakoidbiology.proteinOrganelle biogenesisProtein MultimerizationBiogenesisBiochimica et biophysica acta. Biomembranes
researchProduct

The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation

2017

Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion c…

0301 basic medicineRibosomal ProteinsSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticCèl·lulesÀcids nucleicsGene regulatory networkRibosome biogenesisSaccharomyces cerevisiaeBiologyRibosome assembly03 medical and health sciencesRegulació genèticaGeneticsGene Regulatory NetworksHistone ChaperonesRNA Processing Post-TranscriptionalGeneAdenosine TriphosphatasesFeedback PhysiologicalMessenger RNAOrganelle BiogenesisGene regulation Chromatin and EpigeneticsRNAChromatinCell biology030104 developmental biologyRNA RibosomalMutationATP-Binding Cassette TransportersOrganelle biogenesisTranscriptional Elongation FactorsSynthetic Lethal MutationsTranscriptomeRibosomes
researchProduct

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

2015

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityPopulationRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeChromatin and EpigeneticsRegulonGenètica molecular03 medical and health sciencesTranscripció genèticaTranscription (biology)GeneticsGene RegulationRNA MessengereducationGeneRegulation of gene expressionGeneticsMessenger RNAeducation.field_of_studyOrganelle BiogenesisbiologyGene regulation Chromatin and EpigeneticsRNA-Binding ProteinsRNAGenes rRNACell biologyGenes Mitochondrial030104 developmental biologyGene Expression Regulationbiology.proteinRNARibosomes
researchProduct

PGC-1α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism

2020

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is a transcriptional coactivator described as a master regulator of mitochondrial biogenesis and function, including oxidative phosphorylation and reactive oxygen species detoxification. PGC-1α is highly expressed in tissues with high energy demands, and it is clearly associated with the pathogenesis of metabolic syndrome and its principal complications including obesity, type 2 diabetes mellitus, cardiovascular disease, and hepatic steatosis. We herein review the molecular pathways regulated by PGC-1α, which connect oxidative stress and mitochondrial metabolism with inflammatory response and metabolic syndrome. PGC-1α regula…

AgingThioredoxin reductaseReview ArticleOxidative phosphorylationmedicine.disease_causeBiochemistryAntioxidantsCoactivatormedicineAnimalsHumansInflammationMetabolic Syndromechemistry.chemical_classificationReactive oxygen speciesOrganelle BiogenesisQH573-671ChemistryCell BiologyGeneral MedicinePeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaCell biologyOxidative StressMitochondrial biogenesisOrgan SpecificityThioredoxinCytologyPeroxiredoxinOxidative stressOxidative Medicine and Cellular Longevity
researchProduct

Biogenesis of the Yeast Cell Wall

1984

Yeast cells are covered by a rigid structure that protects the protoplast from osmotic changes and gives the characteristic shape to the cell. Studies on the composition of the wall of several species of yeast and other fungi have shown that they contain mainly polysaccharides with minor amounts of other materials. A completely rigid and continuous wall, nevertheless, would render growth impossible because cell extension would be restricted, so that an equilibrium must exist between softening (partial degradation) of wall and incorporation of new material into free ends of the polymers. From these considerations, it seems clear that the walls must be structurally and enzymatically a complex…

Cell wallbiologyChemistryOrganelleSaccharomyces cerevisiaeBiophysicsPeriplasmic spaceOrganelle biogenesisProtoplastbiology.organism_classificationYeastBiogenesis
researchProduct

Glucosamine Supplementation Improves Physical Performance in Trained Mice

2021

Introduction D-Glucosamine (GlcN) is one of the most widely consumed dietary supplements and complementary medicines in the world and has been traditionally used to attenuate osteoarthritis in humans. GlcN extends lifespan in different animal models. In humans, its supplementation has been strongly associated with decreased total mortality and improved vascular endothelial function. GlcN acts as a suppressor of inflammation and by inhibiting glycolysis, it can activate the metabolism of stored fat and mitochondrial respiration. Methods The conventional human GlcN dose is 1,500 mg x day-1 but extensive evidence indicates that much higher doses are well tolerated. GlcN is one of the supplemen…

MaleAntioxidantmedicine.medical_treatmentSOD2Physical Therapy Sports Therapy and RehabilitationPerformance-Enhancing SubstancesPharmacologymedicine.disease_causeMicechemistry.chemical_compoundGlucosaminePhysical Conditioning AnimalmedicineAnimalsHumansCitrate synthaseOrthopedics and Sports MedicineGlycolysisGlucosamineOrganelle Biogenesisbiologybusiness.industryAMPKPhysical Functional PerformanceMice Inbred C57BLOxidative StresschemistryMitochondrial biogenesisbiology.proteinbusinessOxidative stressMedicine & Science in Sports & Exercise
researchProduct

Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?

2015

Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect.…

medicine.medical_specialtyAntioxidantmedicine.medical_treatmentPhysical exerciseBiochemistryAntioxidantsSuperoxide dismutasechemistry.chemical_compoundPhysiology (medical)Internal medicinemedicineAnimalsHumansMuscle SkeletalXanthine oxidaseExercisechemistry.chemical_classificationReactive oxygen speciesOrganelle BiogenesisNADPH oxidasebiologyMuscle adaptationGlutathione peroxidaseAdaptation PhysiologicalMitochondria MuscleOxidative StressEndocrinologychemistryDietary Supplementsbiology.proteinOxidation-ReductionFree Radical Biology and Medicine
researchProduct